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An electrokinetic model is proposed to describe a slight drop deformation which is
induced by a weak external electric field. The fluids forming the system are considered
Newtonian incompressible dielectric liquids containing free electric charge carriers.
According to the model, the charge carriers take part in migration, diffusion and
convection transport and there is no solute adsorption at the interface. Thermody-
namic quasi-equilibrium at the interface is assumed for the charge carriers in the
contacting liquids. The interfacial thermodynamic equilibrium is described using a
common distribution coefficient for all the carriers. The problem is simplified by
assuming equal diffusion coefficients for the different charge carriers within the same
liquid. An analytical expression is obtained for slight drop deformation which is pro-
portional to the second power of the applied field strength magnitude. The expression
derived represents the drop deformation as a function of the parameters employed
in previous theories (O’Konski & Thacher 1953; Allan & Mason 1962; Taylor 1966)
as well as two additional parameters. The additional parameters are the ratios of
the drop radius to the Debye lengths of the outer and inner liquids, respectively.
The expression obtained for the drop deformation is valid for arbitrary values of
these parameters. According to the theory prediction, with an increase in the drop
radius, the drop deformation monotonically changes from that obtained by O’Konski
& Thacher (1953) and Allan & Mason (1962) for perfect dielectric liquids to that
obtained by Taylor (1966) for leaky dielectric liquids. Two simplified versions of the
general expression are suggested to describe particular cases of a conducting drop in
a perfect dielectric liquid and of a perfect dielectric drop in a conducting liquid.

1. Introduction
Under the influence of an applied electric field, a liquid drop surrounded by another

liquid changes its shape. This effect has been extensively studied during the past five
decades. Much theoretical and experimental effort has been focused on the slight
deformation which is observed in relatively weak external fields and is described by
rather simple analytical expressions.

It was experimentally found by many authors (O’Konski & Thacher 1953; Taylor
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1964; Garton & Krasucki 1964; Ha & Yang 2000; Lu 2002) that, in sufficiently weak
electric fields, the drops elongate along the field strength vector, producing a prolate
shaped drop. For some systems, a number of publications (Allan & Mason 1962;
Torza, Cox & Mason 1971; Arp, Foister & Mason 1980; Vizika & Saville 1992; Ha
& Yang 1995) report drop elongation in the direction perpendicular to the electric
field strength, i.e. a oblate shape.

1.1. Perfect and leaky dielectric models

Theoretical description of drop deformation in a weak electric field is usually based
on two different models which yield two different expressions. They are the perfect
and leaky dielectric models.

The perfect dielectric model was employed by O’Konski & Thacher (1953) and
Allan & Mason (1962) who independently derived an expression describing the drop
deformation. Hereafter, we will refer to this expression as the OTAM result. According
to the perfect dielectric model, both the internal and external liquids are assumed to
be ideal insulators containing no free charge carriers and, hence, having zero electric
conductivity. The force, which deforms a perfect dielectric drop in a perfect dielectric
liquid, occurs since the electric field acts on the bound polarized electric charges.
Under the influence of an electric field, these polarized charges are formed at the
interface between two media having different dielectric permitivities. It can be shown
that such a force is always normal to the interface. Therefore, in the steady-state
regime, this force does not give rise to liquid flows. The stationary deformation of the
drop is determined using a balance of the normal stresses which occur due to this
force and due to the interfacial tension forces. The interfacial tension force contributes
the normal stress balance in the case of a non-zero mean curvature of the interface.
The OTAM result always yields the prolate drop shape.

The leaky dielectric model was employed by Taylor (1966) who derived an expres-
sion which differs from the OTAM result. Later, a justified version of this expression
was published by Melcher & Taylor (1969). We will refer to this expression as Taylor’s
result. The leaky dielectric model differs from the perfect dielectric model through the
assumption of uniform non-zero conductivities of each of the liquids. Thereby, the
leaky dielectric model presumes the existence of free charge carriers in the liquids.
After application of an external electric field, the free charge carriers form the induced
free charge at the interface.

The deforming forces, which act normal to the interface, consist of three parts. The
first part is the electric force acting on the bound polarized charges which also exists
in leaky dielectrics due to a difference in the dielectric permitivities of the liquids.
The second part is the electric force acting on the induced charges normal to the
interface. Unlike the force acting on the bound polarized charges, the force acting on
the induced free charges can have a tangential component, as well. This tangential
force acts on the liquid/liquid interface and gives rise to liquid flow inside and outside
the drop. At the interface, the liquid flow yields non-zero values of the normal viscous
stresses which result in the third part of the deforming force. Taylor (1966) worked
out the final balance between these three components and the interfacial tension
forces. Finally, Taylor (1966) derived an expression which is capable of predicting
both prolate and oblate drop shapes.

Both models yield expressions for the drop deformation which is defined as

d =
a‖ − a⊥
a‖ + a⊥

, (1.1)
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Figure 1. A drop in an external electric field, and the spherical coordinate system.

where a‖ and a⊥ are the semi-axes parallel and normal to the external field strength
(figure 1). For a non-deformed drop a‖ = a⊥ = a, where a is the drop radius, and
d = 0. For the prolate shape, d > 0, and for the oblate shape, d < 0.

The OTAM and Taylor expressions yield a slight drop deformation that corresponds
to a sufficiently weak applied field. We will use the notation δ to signify small
parameter variations due to applying a weak electric field δE . For the small drop
deformations, δd, both theories give a quadratic dependence, (δE)2, which is embedded
in the parameter δW :

δW =
ε0εea

γ
(δE)2, (1.2)

where γ is the interfacial tension coefficient, εe is the external liquid dielectric permi-
tivity and ε0 is the universal dielectric constant.

The OTAM and Taylor expressions differ in the proportionality coefficient between
δd and δW , and can be represented respectively as

δdOTAM

δW
=

9(S − 1)2

16(S + 2)2
, (1.3)

δdTaylor

δW
=

9

16(H + 2)2

[
1 +H2 − 2S +

3

5
(H − S)

2 + 3M

1 +M

]
. (1.4)

Both the OTAM result, as S → ∞, and the Taylor result, as H → ∞, approach the
common limit given by

δdcommon

δW
=

9

16
. (1.5)

The right-hand side of (1.3) contains one parameter S whereas (1.4) contains three
parameters H , S and M. They are the ratios of the internal to external values of the
conductivities (σi,e), the permitivities (εi,e) and the viscosities (ηi,e), respectively:

S =
εi

εe
, H =

σi

σe
, M =

ηi

ηe
. (1.6)

Unlike the original work of Taylor (1966) and some relevant publications by other
authors (Torza et al. 1971; Vizika & Saville 1992; Saville 1997), each of the definitions
given by (1.6) contains the internal coefficient in the numerator and the external in the
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denominator. The definitions given by (1.6) make equations (1.3) and (1.4) equivalent
to the expressions derived in the original papers (O’Konski & Thacher 1953; Allan
& Mason 1962; Taylor 1966; Melcher & Taylor 1969).

It should be noted that, in terms of the ionic concentrations, the range of validity
of the two models does not overlap. This follows from the fact that, by using the
limiting transition σi → 0 and σe → 0 in equation (1.4), one cannot obtain equation
(1.3). Strictly speaking, the right-hand side of (1.4) depends on the conductivity
ratio, H , and does not depend on the individual conductivities. Therefore, when the
ionic concentrations in both liquids approach zero (i.e. σi → 0 and σe → 0), while
keeping constant the ratio of the ionic concentrations of the different phases (i.e.
H = σi/σe = const), equation (1.4) is not altered in spite of the fact that both liquids
are converted into perfect dielectrics for this transition. Let us consider the physical
reasons for this.

Basically, the leaky dielectric model ignores thermal motion of the charge carriers.
Accordingly, Taylor (1966) did not take into account the contribution due to diffusion
of the charge carriers to the electric current, which means that the local current density,
I , was represented only by the migration term:

I = −σ∇Ψ, (1.7)

where Ψ is the electric potential. Taylor combined equation (1.7) with the steady-state
continuity equation for the electric current density

∇ · I = 0. (1.8)

For a homogeneous medium (σ = const), combining (1.7) and (1.8) leads to the
Laplace equation which is written for both the internal and external liquids as

∇2Ψi,e = 0. (1.9)

The Laplace equation (1.9) indicates that free electric charge does not exist in the
liquid bulk. At the same time, it can exist at the interface where σ changes sharply.
For such an interface, combining (1.7) and (1.8) leads to the boundary condition at
the interface

(σe∇Ψe − σi∇Ψi) · n = 0. (1.10)

Using (1.10) and the Gauss theorem, one obtains the interfacial charge density, qS , as

qS = ε0(εe∇Ψe − εi∇Ψi) · n =
ε0εe

σi
(H − S)I · n. (1.11)

where I = −σe∇Ψe is the electric current density at the interface. Thus, ignoring
the thermal motion of the carriers leads to the consequence that the induced electric
charge is entirely localized at the interface within a vanishingly thin layer.

Due to the thermal motion of the charge carriers, the induced charge is expected
to be spread out within a region of non-zero dimension. Within such a region,
equation (1.7) does not hold and should be corrected by the additional diffusion term.
Consequently, the Laplace equation (1.9) should be replaced by the Poisson equation
to describe the space electric charge.

To draw a conclusion on whether the leaky dielectric model yields reasonable
predictions, one has to assess whether the induced charge layer is sufficiently thin
compared with the particle radius, a. The thickness of the free charge layer can be
evaluated using the reciprocal Debye parameters for the contacting liquid, κ−1

i,e , (Debye
& Huckel 1923). Therefore, it can be expected that a system behaves exactly according
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to the leaky dielectric model when κi,ea → ∞. Since the Debye parameter, κi,e, is an
increasing function of the ionic concentrations (Debye & Huckel 1923), Taylor’s
result (1.4) is an appropriate approximation for sufficiently high concentrations, i.e.
κi,ea� 1.

The perfect dielectric model, which describes systems with zero ionic concentrations,
corresponds to the limiting transition κi,ea→ 0. Consequently, the OTAM result (1.3)
is an appropriate approximation for systems with sufficiently low ionic concentrations,
i.e. κi,ea� 1. Within the range of intermediate concentrations, which corresponds to
κi,ea = O(1), neither Taylor’s nor the OTAM theories are valid. Therefore one can
expect that these two theories are limiting cases of a more general theory.

1.2. Electrokinetic model as a ‘bridge’ between the perfect and leaky dielectric models

A general theory, which could play the role of a ‘bridge’ between the OTAM and
Taylor results, should be based on the Poisson equation instead of the Laplace
equation (1.9). Additionally, the continuity equations should be written for the flux
of each of the carriers. Such an equation set is subject to boundary conditions which
reflect properties of the interface. Models of this type are referred to as electrokinetic
models (Saville 1997).

The need to develop an electrokinetic model for the drop deformation appears
to have been first noted by Torza et al. (1971). The most general versions of the
electrokinetic model were suggested by Baygents & Saville (1991) and Saville (1997).
Baygents & Saville (1989) conducted a pioneering analysis to determine how the
use of an electrokinetic model can change the expression for the drop deformation,
as compared with the Taylor’s result given by (1.4). They concluded that, using an
electrokinetic model, one cannot obtain any modification to Taylor’s expression (1.4).
The above conclusion is strictly valid for the limiting case of κi,ea → ∞. This is
because of the nature of the approach employed by Baygents & Saville (1989), who
used a singular perturbation method in terms of the small parameters (1/κi,ea). They
considered the condition 1/κi,ea � 1 since they intended to explain the experiments
of Torza et al. (1971), which were for relatively large drops with radius of 10−3 m.

The objective of the present paper is to derive an analytical expression capable of
describing the drop deformation for arbitrary values of the parameters κi,ea. In the
problem formulation, in contrast with Taylor’s model, the contribution of diffusion
into ionic transfer will be taken into account and the electric field distribution will
be described by the Poisson equation (§ 2). This problem will be solved to obtain the
drop deformation (§ 3). Using the limiting transitions of κi,ea → 0 and κi,ea → ∞ in
the final expression, we will obtain the drop deformation given by equations (1.3) and
(1.4) for the perfect and leaky dielectrics, respectively (§ 4). Combining the limiting
transitions of κea→ 0 and κia→∞ or κia→ 0 and κea→∞ we will describe the case
of a conducting drop in a perfect dielectric liquid or the case of a perfect dielectric
drop in a conducting liquid (§ 4).

The electrokinetic theory will be developed using two simplifying assumptions: (i)
the drop surface and bulk do not bear any electric charge prior to the electric field
being applied; and (ii) the charge carriers have equal diffusion coefficients.

2. Formulation of the mathematical problem
The system under consideration includes a Newtonian liquid drop which is sur-

rounded by another Newtonian liquid. Non-zero conductivity is assumed due to the
presence of electric charge carriers in the liquids. In the general case, the concentration
of the kth carrier, C (k)

i,e , changes from point to point.
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In the framework of the model, the interface separating the two liquids does not
adsorb either the charge carriers or another solute. This assumption, which strictly
limits the applicability of the theory, means that the interface does not bear a
free electric charge. According to the Gibbs equation, at zero solute adsorption the
interface is characterized by a constant value of the interfacial tension coefficient, γ
(Adamson & Gast 1997).

The interface is assumed to be vanishingly thin. Therefore, the local interfacial
thermodynamic equilibrium is established infinitely fast for any external influence.
The local thermodynamic equilibrium condition enables one to equate the chemical
potentials of the charge carriers in both contacting liquids at the interface. Conse-
quently, one can derive a relationship between the concentrations of the kth carrier
in the contacting liquids:

C
(k)
i

C
(k)
e

= α(k) at the interface. (2.1)

Here, the distribution coefficient α(k) is assumed to be unaffected by an external
influence on the system. This assumption matches with the widely employed Born
(1920) model where the distribution coefficient is defined by a difference in the
dielectric permitivities of the contacting media and by the ionic radius. Accordingly,
for a given charge carrier, the value of α(k) is a constant for given liquids.

2.1. Thermodynamic equilibrium

Let us now discuss the actual thermodynamic equilibrium when no external electric
field is applied to the system. The equilibrium in a system of two contacting liquids
has been considered by many authors. For example, for spherical drops, a relevant
analysis can be found in Zholkovskij, Czarnecki & Masliyah (2001). According to this
analysis, in the case of zero adsorption the drop bulk bears an equilibrium electric
charge if the different charge carriers have different distribution coefficients α(k). The
charge and the individual concentrations of the charge carriers are distributed within
a certain region of the drop bulk. Consequently, an equilibrium countercharge and
relevant concentration distributions are formed outside the drop.

The electric double layer described above does not exist in an equilibrium state
when the ions have equal distribution coefficients, i.e.

α(k) = α. (2.2)

The model studied in the present paper deals with uncharged drops. Thus, the only
consistent approach which enables one to ignore the drop charge is to assume the
condition given by (2.2) to be valid for the system. When condition (2.2) holds, and
the interface does not bear electric charge, at zero external electric fields the system
has the following properties:

(i) the equilibrium electric potential, ψi,e, which is defined with reference to infinity,
does not deviate from a zero value

ψi,e = 0; (2.3a)

(ii) the equilibrium concentrations of the charge carriers, c(k)
i,e , within the bulk of

each of the liquids are space independent and satisfy the condition set at the interface
by (2.1), i.e.

c
(k)
i

c
(k)
e

= α; (2.3b)
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(iii) the concentrations, c(k)
i,e , satisfy the electroneutrality condition∑

k

Z (k)c
(k)
i,e = 0. (2.3c)

Here, Z (k) is the electric charge of the kth charge carrier expressed in Faraday units.
Within each of the liquids the pressure is uniform and changes sharply at the

interface according to the Laplace relationship

pe = 0, pi =
2γ

a
. (2.4)

2.2. Governing equations and boundary conditions

The system behaviour after the electric field has been applied will be described using
the first-order perturbation technique. Accordingly, we will represent the species
concentrations C (k)

i,e , electric potential, Ψi,e, the local velocity, U i,e, and the pressure,
Pi,e as sums of the relevant equilibrium values, which were discussed in § 2.1, and their

variations due to the applied electric field δE (respectively, δC (k)
i,e , δΨi,e, δU i,e, and

δPi,e):

C
(k)
i,e = c

(k)
i,e + δC

(k)
i,e , Ψi,e = ψi,e + δΨi,e = δΨi,e (2.5a, b)

U i,e = ui,e + δU i,e = δU i,e, Pe = pe + δPe = δPe, Pi = pi + δPi =
2γ

a
+ δPi.

(2.5c, d, e)
It should be noted that, in the presence of an electric field, the system shown in

figure 1 is characterized by axial symmetry. Since we analyse the behaviour close
to the thermodynamic equilibrium, we do not expect any instability (Nicolis &
Prigogine 1977) which could break the symmetry. Accordingly, all space distributions
are assumed to depend on two coordinates, r and θ, of spherical coordinate system
(figure 1). One can introduce the function rs(θ), which describes the surface shape of
the deformed drop. The spherical shape at δE = 0 is described by rs(θ) = a. Using
δrs(θ), we represent rs(θ) as

rs(θ) = a+ δrs(θ). (2.5f )

The liquid inside the drop is assumed to be incompressible, and the drop volume
variation should be zero. Using (2.5f ) one obtains

δV = 2πa2

∫ π

0

δrs(θ) sin(θ) dθ = 0. (2.5g)

We will use the interface mean curvature X(θ) which can be represented as

X(θ) =
1

a
+ δX(θ). (2.5h)

The drop deformation given by (1.1) can be expressed as

δd =
δrs(0)− δrs(π/2)

2a
. (2.6)

In this paper, we will evaluate the variation of drop deformation, δd, given by (2.6).

2.2.1. Balance of normal stresses

The functions which characterize the deviation of the drop shape from a sphere,
δrs(θ) and δd, are evaluated using a balance of the normal stresses acting on the
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interface. In the present theory, the normal stress balance is completely analogous
to the relevant equation employed in Taylor’s model as well as in the electrokinetic
model of Baygents & Saville (1989) and Saville (1997). The force balance at the
interface, after making use of (2.5b–d, h), can be represented in the form

ε0

2
{εe(∇δΨe · n)2 − εi(∇δΨi · n)2 − (εe − εi)[(∇δΨi)

2 − (∇δΨi · n)2]}
−(δPe − δPi) + {ηe[∇δU e + (∇δU e)

∗] · n− ηi[∇δU i + (∇δU i)
∗] · n} · n = 2γδX.

(2.7)

Here, the unit vector n is normal to the interface outward into the external liquid.
The superscript ∗ signifies the transpose of the corresponding tensor.

Similarly to the theories of Taylor (1966), Baygents & Saville (1989) and Saville
(1997), the first term in (2.7) is the contribution of the Maxwell tensor to the normal
stresses. It describes the variation of the normal electric force acting an element at the
interface. All other terms on the left-hand side of (2.7) yield variation of the normal
mechanical force. The term on the right-hand side of (2.7) yields the variation of the
interfacial tension force.

On writing (2.7), it was assumed that δγ = 0. This condition is exactly satisfied for
the case of zero solute adsorption. In the framework of the Taylor (1966) model, for
the case of non-ionic surfactants, the role of this effect was analysed by Vizika &
Saville (1992) and Ha & Yang (1995, 1998).

To use equation (2.7), one has to obtain the distributions of the potential (δΨi,e),
pressure (δPi,e) and velocity (δU i,e) variations. Let us now formulate the boundary
problem for obtaining these distributions.

2.2.2. Distribution of electric potential

The distribution of the electric field should satisfy the Poisson equation

∇2δΨi,e = − δqi,e
εi,eε0

, (2.8)

where δqi,e, is the volumetric density of the induced free charge. It is defined as

δqi,e = F
∑
k

Z (k)δC
(k)
i,e . (2.9)

Equation (2.8) contains two unknown functions, δqi,e and δΨi,e, and hence an addi-
tional equation is required. For equal diffusion coefficients, the continuity equation
for the electric current can be also written in term of these two functions only:

∇ · (−σi,e∇δΨi,e − Di,e∇δqi,e) = 0, (2.10)

where Di,e is the common ionic diffusion coefficient which can differ for the external
and internal liquids. In equation (2.10), the vector in brackets is the electric current
density: the first and second terms are the migration and diffusion parts, respectively.
The convection part is described by the higher-order term, δU i,eδqi,e, which is omitted
from (2.10). Using the Einstein relationship between the diffusion coefficient and the
migration mobility, it is convenient represent the local conductivity, σi,e, as

σi,e = Di,eε0εi,eκ
2
i,e. (2.11)
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In the framework of the first-order perturbation technique, the Debye parameter in
(2.11) is expressed through the uniform equilibrium concentrations, c(k)

i,e , as

κ2
i,e =

F2

ε0εi,eRT

∑
k

(Z (k))2c
(k)
i,e . (2.12)

Thus, compared with Taylor’s theory, where the electric potential was obtained
from a single Laplace equation (1.9), the model presented here involves two equations
(2.8) and (2.10) containing two unknown functions, δqi,e and δΨi,e.

Equations (2.8) and (2.10) are subject to the following boundary conditions. A
uniform electric field strength at infinity is assumed:

∇δΨe = −δE at infinity. (2.13)

At the interface, the boundary conditions reflect continuity of the electric potential
and of the normal electric current and displacement. These conditions are, respectively,
given by

δΨe = δΨi at the interface, (2.14)

(σe∇δΨe + De∇δqe − σi∇δΨi − Di∇δqi) · n = 0 at the interface, (2.15)

(εe∇δΨe − εi∇δΨi) · n = 0 at the interface. (2.16)

The last boundary condition is obtained by combining (2.1), (2.5a) and (2.9):

δqi

δqe
= α at the interface. (2.17)

Boundary conditions (2.16) and (2.17) resulted from the fact that the induced charge
is attributed to the liquid bulk, not to the interface, as is in Taylor’s model. Boundary
condition (2.17) is written for the volumetric density of this charge. The condition
given by (2.16) was absent in Taylor’s theory where the normal electric displacement
was discontinuous at the interface.

There is also condition (2.15) which is a modification of Taylor’s boundary condition
(1.10) for the continuity of the normal electric current density at the interface. The
modification amounts to accounting for the additional contribution to the electric
current due to the diffusion term, Di,e∇δqi,e. Note that, when δqi,e = 0, (2.15) is
transformed into Taylor’s boundary condition (1.10). Simultaneously, the boundary
conditions given by (2.16) and (2.17) become redundant since, at δqi,e = 0, both
equations (2.8) and (2.10) are transformed into a single Laplace equation.

It should be noted that, using the simplifying assumptions of the proposed model,
the electric part of the problem, which is given by equations (2.8) and (2.10) subject
to boundary conditions (2.13)–(2.17), could be obtained from the electrokinetic model
presented by Baygents & Saville (1991) and Saville (1997).

2.2.3. Hydrodynamic stresses

The mechanical stresses, which are represented in (2.7), are governed by the Navier–
Stokes equation set containing the volumetric electric force. Using (2.5a, b) and (2.9)
one can represent the leading terms for volumetric electric force as −δqi,e∇δΨi,e. In
terms of δU i,e, the inertial forces yield a higher-order contribution than the viscous
forces. Hence, the Navier–Stokes equation set can be written as

−ηi,e∇× (∇× δU i,e) = ∇δPi,e + δqi,e∇δΨi,e, (2.18)

∇ · δU i,e = 0. (2.19)
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Equations (2.18) and (2.19) are subject to the following boundary conditions:
the external liquid velocity and pressure is zero at infinity

δU e = 0 at infinity, (2.20)

δPe = 0 at infinity; (2.21)

the normal velocities of both liquids are zero at the interface

δU i,e · n = 0 at the interface; (2.22)

tangential velocities are continuous at the interface

(δU e − δU i)× n = 0 at the interface; (2.23)

at the interface with no adsorbed solute, the tangential stresses should be continuous

{ηe[∇δU e + (∇δU e)
∗] · n− ηi[∇δU i + (∇δU i)

∗] · n} × n = 0 at the interface. (2.24)

Thus, (2.18)–(2.24) represent the hydrodynamic part of the problem. In contrast
to Taylor’s model, (2.18) contains the electric volumetric force and (2.24) does not
contain the tangential Maxwell stresses.

Strictly speaking (2.7), can be also considered as a boundary condition for equations
(2.8), (2.10), (2.18) and (2.19). Thus, solution of these equations subject to boundary
conditions (2.7), (2.13)–(2.17) and (2.20)–(2.24) yields the variations of the potential
(δΨi,e), the charge density (δqi,e), the velocity (δU i,e), the pressure (δPi,e) and the drop
shape (δrs(θ)). The derived variation δrs(θ) should be substituted into (2.6) to obtain
the drop deformation, δd.

2.3. Final form of the mathematical model

Without losing accuracy, all the boundary conditions which were set at the deformed
interface rs(θ) (§ 2.2), can be transferred to the initial spherical interface. For any
function δφ[rs(θ)] at the interface, one can write

δφ[rs(θ)] = δφ(a, θ) + [rs(θ)− a]∂δφ
∂r

(a, θ) + O[(rs − a)2]. (2.25)

Since rs(θ) − a = O[(δE)2], one can conclude that δφ[rs(θ)] − δφ(a, θ) = o[(δE)2].
Applying the boundary conditions at the initial (spherical) interface rather than at
the deformed interface gives an error which has the same or even higher order as the
terms omitted while deriving (2.7), (2.10), (2.15) and (2.18). Using the Taylor problem,
Ajayi (1978) showed that accounting for the interface deformation in the boundary
conditions yields corrections of drop deformation of order (δE)4.

Due to the opportunity to set the boundary conditions at an a priori known
spherical interface, equations (2.8) and (2.10) subject to boundary conditions (2.13)–
(2.17) form a closed problem formulation. We will use the spherical coordinate system
shown in figure 1 and the following normalization:

ρ =
r

a
, Φi,e =

δΨi,e

aδE
, ωi,e =

δqi,e

ε0εi,eκ
2
i,eaδE

, ∇̃ = a∇ = iρ
∂

∂ρ
+
iθ
ρ

∂

∂θ
(2.26)

where iρ and iθ are unit vectors of the spherical coordinate system in figure 1.
Consequently, the equation set given by (2.8) and (2.10) can be rewritten as

∇̃2ωi,e = (κi,ea)
2ωi,e, (2.27)

∇̃2(Φi,e + ωi,e) = 0. (2.28)
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Boundary conditions (2.13)–(2.17) are represented, as

Φe(ρ, θ) = −ρ cos θ as ρ→∞, (2.29)

Φe(1, θ) = Φi(1, θ), (2.30)

∂Φe

∂ρ
(1, θ) = S

∂Φi

∂ρ
(1, θ), (2.31)

∂(Φe + ωe)

∂ρ
(1, θ) = H

∂(Φi + ωi)

∂ρ
(1, θ), (2.32)

ωi(1, θ) = ωe(1, θ). (2.33)

Equations (2.27) and (2.28) subject to the boundary conditions (2.29)–(2.33) provide
distributions of the normalized potential, Φi,e, and the charge density, ωi,e.

Now we consider the fluid mechanics part of the problem described by (2.18)–(2.24).
Introducing the substitutions

Πi,e = δPi,e/ε0εe(κea)
2(δE)2, V i,e = δU i,eηe/ε0εea(κea)

2(δE)2, (2.34)

we obtain the normalized version of the hydrodynamic equations

−∇̃× (∇̃× V e) = ∇̃Πe + ωe∇̃Φe, (2.35)

−M∇̃× (∇̃× V i) = ∇̃Πi + αωi∇̃Φi, (2.36)

∇̃ · V i,e = 0 (2.37)

The boundary condition at infinity is

V e(ρ, θ)→ 0 as ρ→∞. (2.38)

The boundary conditions (2.33)–(2.35) are set at the non-deformed drop surface as

Viρ(1, θ) = Veρ(1, θ) = 0, (2.39)

Viθ(1, θ) = Veθ(1, θ), (2.40)

∂(Veθ/ρ)

∂ρ
(1, θ) = M

∂(Viθ/ρ)

∂ρ
(1, θ), (2.41)

where Viρ and Veρ are the radial components of the internal and external normalized
velocity given by (2.34); Viθ and Veθ are the relevant tangential components. Making
use of the solution obtained for Φi,e(ρ, θ) and ωi,e(ρ, θ), equations (2.35)–(2.37) and
boundary conditions (2.38)–(2.41) yield the hydrodynamic problem formulation.

Now, we will consider the use of the normal stress balance (2.7). The small variations
of the mean curvature, δX, and of the drop shape, δrs(θ), can be related using a
known expression (for example, see Landau & Lifshitz 1987):

δX = − 1

a2

{
δrs(θ) +

1

2 sin(θ)

d

dθ

[
sin(θ)

dδrs(θ)

dθ

]}
. (2.42)

Combining (2.7), (2.26), (2.34) and (2.42) one obtains

S − 1

4

{[
∂Φi

∂θ
(1)

]2

+ S

[
∂Φi

∂ρ
(1)

]2
}
− (κea)

2

{
1

2
[Πe(1)−Πi(1)]

−
[
∂Veρ

∂ρ
(1)−M∂Viρ

∂ρ
(1)

]}
= −

{
ξ(θ) +

1

2 sin(θ)

d

dθ

[
sin(θ)

dξ(θ)

dθ

]}
. (2.43)



12 E. K. Zholkovskij, J. H. Masliyah and J. Czarnecki

The dimensionless function ξ(θ) is expressed as

ξ(θ) = δrs(θ)γ/ε0εea
2(δE)2. (2.44)

Equation (2.43) is subject to a condition which is derived using (2.5g) and (2.44):∫ π

0

ξ(θ) sin(θ) dθ = 0. (2.45)

Combining (2.6) and (2.44) the drop deformation, δd, can be represented in the form

δd = 1
2
[ξ(0)− ξ(π/2)]δW, (2.46)

where the dimensionless parameter δW is given by (1.2).
To predict the drop deformation, δd, one should: (i) solve the problem given by

(2.27), (2.28) and (2.29)–(2.33); (ii) using the derived functions Φi,e(ρ, θ) and ωi,e(ρ, θ),
solve the fluid mechanic problem (2.35)–(2.41); (iii) substitute the obtained functions
Φi,e(ρ, θ), Πi,e(ρ, θ) and V i,e(ρ, θ) in (2.43) and solve the resulting equation using (2.45);
and finally (iv) substitute the derived function ξ(θ) into (2.46).

3. Model predictions
3.1. Distribution of electric charge and potential

To obtain solution of the axially symmetric boundary problem given by (2.27),
(2.28) and (2.29)–(2.33), we expand the unknown functions ωi,e(ρ, θ) and Φi,e(ρ, θ) in
Legendre polynomials, pn[cos(θ)]. Due to the orthogonal property of the Legendre
polynomial, only the first Legendre harmonic takes a non-zero value. Accordingly

ωi,e(ρ, θ) = ω
(1)
i,e (ρ) cos(θ), (3.1)

Φi,e(ρ, θ) = Φ
(1)
i,e (ρ) cos(θ). (3.2)

The first Legendre harmonics ω(1)
i,e (ρ) and Φ(1)

i,e (ρ) satisfy

d2ω
(1)
i,e

dρ2
+

2

ρ

dω(1)
i,e

dρ
−
[

2

ρ2
+ (κa)2

]
ω

(1)
i,e = 0, (3.3)

d2(Φ(1)
i,e + ω

(1)
i,e )

dρ2
+

2

ρ

d(Φ(1)
i,e + ω

(1)
i,e )

dr̃
− 2(Φ(1)

i,e + ω
(1)
i,e )

ρ2
= 0, (3.4)

which are subject to the boundary conditions

Φ(1)
e = −ρ as ρ→∞, (3.5)

ω(1)
e = 0 as ρ→∞, (3.6)

Φ(1)
e (1) = Φ

(1)
i (1), (3.7)

dΦ(1)
e

dρ
(1) = S

dΦ(1)
i

dρ
(1), (3.8)

d(Φ(1)
e + ω(1)

e )

dρ
(1) = H

d(Φ(1)
i + ω

(1)
i )

dρ
(1), (3.9)

ω(1)
e (1) = ω

(1)
i (1). (3.10)
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Solution of the problem given by (3.3)–(3.10) yields ω(1)
i,e (ρ) and Φ(1)

i,e (ρ):

ω(1)
e (ρ) = G

κeaρ+ 1

κea+ 1

exp[−κea(ρ− 1)]

ρ2
, (3.11)

ω
(1)
i (ρ) =

G

ρ2

κiaρ cosh(κiaρ)− sinh(κiaρ)

κia cosh(κia)− sinh(κia)
, (3.12)

Φ(1)
e (ρ) = −ρ+

1

ρ2

H − 1

H + 2
− G

ρ2

κeaρ+ 1

κea+ 1
exp[−κea(ρ− 1)], (3.13)

Φ
(1)
i (ρ) = − 3

H + 2
ρ− G

ρ2

κiaρ cosh(κiaρ)− sinh(κiaρ)

κia cosh(κia)− sinh(κia)
. (3.14)

Here, G is a constant given by

G = 3
S −H
H + 2

1

2(S − 1)− S(κia)
2

κia coth(κia)− 1
− (κea)

2

κea+ 1

. (3.15)

Thus, equations (3.1), (3.2) and (3.11)–(3.15) yield space distributions of the normalized
charge density and electric potential outside and inside the drop.

3.2. Prediction of the mechanical stresses

Continuity equation (2.37) gives the following representation of the normalized local
velocity, V i,e, inside and outside the drop:

V i,e = − iρ
ρ2 sin θ

∂Ωi,e

∂θ
+

iθ
ρ sin θ

∂Ωi,e

∂ρ
. (3.16)

Here, Ωi,e(ρ, θ) is the Stokes stream function of the internal and external liquids,
respectively. Applying the operator ∇ × to both sides of each of (2.35) and (2.36)
and making use of the substitution given by (3.16), we obtain a scalar equation for
Ωi,e(ρ, θ). Expression (3.16) is also substituted into boundary conditions (2.38)–(2.41).
Then, we expand Ωi,e(ρ, θ) in the Gegenbauer polynomial series. Due to the orthogonal
property of the Gegenbauer polynomials, only the third Gegenbauer harmonic takes
a non-zero value. Accordingly

Ωi,e(ρ, θ) = Ω
(3)
i,e (ρ) cos(θ) sin2(θ). (3.17)

Here, the function Ω(3)
i,e (ρ) is obtained as a solution of equations

(
d2

dρ2
− 6

ρ2

)2

Ω(3)
e (ρ) = −G

3ρ(κeaρ+ 1) + (κea)
2

(
ρ3 − H − 1

H + 2

)
κea+ 1

exp[−κea(ρ− 1)]

ρ3
,

(3.18)(
d2

dρ2
− 6

ρ2

)2

Ω
(3)
i (ρ) = − 9αG

M(H + 2)ρ2

κia cosh(κiaρ)− [1 + (κiaρ)2/3] sinh(κiaρ)

κia cosh(κia)− sinh(κia)
(3.19)

subject to the following boundary conditions

Ω(3)
e

ρ2
→ 0 as ρ→∞, (3.20)

Ω
(3)
i (1) = Ω(3)

e (1) = 0, (3.21)
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dΩ(3)
i

dρ
(1) =

dΩ(3)
e

dρ
(1), (3.22)

d2Ω(3)
e

dρ2
(1)− 2

dΩ(3)
e

dρ
(1) = M

[
d2Ω

(3)
i

dρ2
(1)− 2

dΩ(3)
i

dρ

]
. (3.23)

Solution of the problem given by (3.18)–(3.23) takes the form

Ω(3)
e (ρ) =

5(ρ2 − 1)

2ρ2
Q+

G

1680(κea+ 1)

{[(
(κea)

5ρ4 − (κea)
4ρ3

−26(κea)
3ρ2 + 22(κea)

2ρ− 32κea+
48

ρ
+

48

κeaρ2

)
H − 1

H + 2

− 1680

(κea)2

(
3

(κea)2ρ
+

3

κeaρ
+ 1

)]
exp[−κea(ρ− 1)]− (κea)

4 exp(κea)

2

H − 1

H + 2

×
[(

5(κea)
2 − 84

ρ2
+ 7(20− (κea)

2)

)
E1(κea) + 2ρ3((κea)

2ρ2 − 28)E1(κeaρ)

]
−7κea

2

H − 1

H + 2
[(κea)

4 − (κea)
3 − 18(κea)

2 + 14κea− 16]− 840(κea+ 1)

(κea)2

− 1

2(κea)4ρ2

[
(−5(κea)

6+5(κea)
5+74(κea)

4−54(κea)
3+ 48(κea)

2 + 96κea+ 96)

×(κea)
3H − 1

H + 2
− 1680(κea)

2(κea+ 3)− 10080(κea+ 1)

]}
(3.24)

and

Ω
(3)
i (ρ) =

5

2
Qρ3(ρ2 − 1) +

3αG

(H + 2)M(κia)3[κia cosh(κia)− sinh(κia)]

×
{

3 + (κia)
2ρ2

κiaρ2
sinh(κiaρ)− 3 cosh(κiaρ)

ρ

+ρ3

[
3(5 + 2(κia)

2)ρ2 − 21− 8(κia)
2

2κia
sinh(κia)

− (15 + (κia)
2)ρ2 − 21− (κia)

2

2
cosh(κia)

]}
. (3.25)

Here, the constant Q is given by

Q= − G

25(1 +M)(κea+ 1)

{
1 + 3α

κea+ 1

(κia)4[κia coth(κia)− 1]

× [(κia)
4 + 45(κia)

2 + 105]− 5κia[(κia)
2 + 21] coth(κia)

H + 2

+ (κea)
2H − 1

H + 2

(κea)
2[(κea)

2 − 12] exp(κea)E1(κea)− (κea+ 3)[(κea)
2 − 4κea+ 2]

48

}
.

(3.26)
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The function E1(κea) employed in (3.24)–(3.26) is the exponential integral given by

E1(κea) =

∫ ∞
κea

exp(−t)
t

dt. (3.27)

To obtain the pressure, we substitute (3.1), (3.2), (3.16) and (3.17) into (2.35) and
(2.36). After some transformations, we obtain expressions for the complete differential:

dΠe = −
[

1

ρ2 sin(θ)

∂(L2Ωe)

∂θ
+ ωe

∂Φe

∂ρ

]
dρ+

[
1

sin(θ)

∂(L2Ωe)

∂ρ
− ωe ∂Φe

∂θ

]
dθ, (3.28)

dΠi = −
[

1

ρ2 sin(θ)

∂(L2Ωi)

∂θ
+ αωi

∂Φi

∂ρ

]
dρ+

[
M

sin(θ)

∂(L2Ωi)

∂ρ
− αωi ∂Φi

∂θ

]
dθ. (3.29)

Combining (3.1), (3.2), (3.28) and (3.29) and integrating the expression obtained yields

Πe(ρ, θ) =
1− 3 cos2 θ

6

[
d

dρ

(
d2Ω(3)

e

dρ2
− 6

Ω(3)
e

ρ2

)
+ Φ(1)

e ω
(1)
e

]
+

1

3

∫ ∞
ρ

[
dΦ(1)

e

dx
ω(1)
e

]
dx,

(3.30)

Πi(ρ, θ) = Πi(0) +
1− 3 cos2 θ

6

[
M

d

dρ

(
d2Ω

(3)
i

dρ2
− 6

Ω
(3)
i

ρ2

)
+ αΦ

(1)
i ω

(1)
i

]

−α
3

∫ ρ

0

[
dΦ(1)

i

dx
ω

(1)
i

]
dx, (3.31)

where Πi(0) is the normalized pressure in the centre of the drop.
The normalized radial velocity, which is present in (2.55), is obtained by combining

(3.16) and (3.17):

Vi,eρ =
Ω

(3)
i,e

ρ2
(1− 3 cos2 θ). (3.32)

Expressions (3.30)–(3.32) combined with (3.14)–(3.16) and (3.33)–(3.35) yield functions
which are employed in (2.43).

3.3. Prediction of the drop deformation

According to (2.46), to predict the drop deformation, δd, one has to determine the
function ξ(θ) from (2.43). To this end, we combine (3.1), (3.2), (3.17), (3.30)–(3.32) and
(2.43), and represent ξ(θ) using a series of the Legendre polynomials, pn[cos(θ)]. Due
to condition (2.45) and to the orthogonal properties of the Legendre polynomials, only
the second Legendre harmonic, ξ(2), takes a non-zero value. Consequently, expression
(2.46) for the drop deformation, δd, is rewritten as

δd = 3
4
ξ(2)δW, (3.33)

where ξ(2) takes the form

ξ(2) =
S − 1

12

S
[
∂Φ

(1)
i

∂ρ
(1)

]2

− [Φ(1)
i (1)]2


+

(κea)
2

12

[
d3Ω(3)

e

dρ3
(1)−M d3Ω

(3)
i

dρ3
(1)− 18(1−M)

dΩ(3)
i

dρ
(1)− (α− 1)Φ(1)

i (1)ω(1)
i (1)

]
.

(3.34)
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Using (3.11)–(3.15) and (3.24) (3.26) to obtain the functions represented in (3.34), we
derive the final expression for the drop deformation:

δd

δW
=

9

16(H + 2)2

×
[
(S − 1)2 +

S −H
2(S − 1)− (κea)2/(κea+ 1)− Sψ(κia)

Λ(H, S,M, κea, κia)

]
,

(3.35)

where the function Λ(H, S,M, κea, κia) is given by

Λ = S

{
5−M
1 +M

− 4S +
21(3 + 2M)

(1 +M)(κia)2
[3− ψ(κia)] + ψ(κia)

(
3

5

2 + 3M

1 +M
+ 2S

)}
+

(κea)
6(H − 1)

240

(2 + 3M)(κea)
2 − 4(16 + 19M)

(1 +M)(κea+ 1)
exp(κea)E1(κea)

+
(κea)

4(H − 1)

240(κea+ 1)

{
40(κea− 1)− (κea+ 3)[(κea)

2 − 4κea+ 2]
2 + 3M

M + 1

}
+

(κea)
2(H + 2)

5(κea+ 1)

[
2 + 3M

M + 1
+

5

3
(3 + κea)

]
+ 2− (κea)

2

+(S −H)
(S − 1){S[2− ψ(κia)]

2 − 1}+ (κia)
2S − (κea)

2

2(S − 1)− (κea)2/(κea+ 1)− Sψ(κia)
, (3.36)

where we introduced the notation

ψ(κia) =
(κia)

2

κia coth(κia)− 1
. (3.37)

Equations (3.35)–(3.37) represent the normalized drop deformation, δd/δW , as an
explicit function of the parameters H , S and M, which were employed in the previous
theory of Taylor (1966), together with two additional parameters κia and κea which
are specific to the present theory.

4. Analysis of limiting cases
Now, we will discuss the limiting cases, when the additional parameters, κia and

κea approach either zero or infinity. First, we will show that, for these limiting cases,
the result of the present model is transformed into expressions obtained earlier by
others.

4.1. Perfect dielectric in perfect dielectric (OTAM limit)

Taking into account (2.12) and assuming that c(k)
i,e → 0 one can conclude that for

perfect dielectrics

κea→ 0, κia→ 0. (4.1)

For κia� 1, the function ψ(κia) given by (3.37) takes following asymptotic form:

ψ(κia) = 3 +
(κia)

2

5
+ O((κia)

4). (4.2)
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Combining (3.35), (3.36) and (4.2), making use of the limiting transition given by (4.1)
and retaining only leading terms, one obtains

lim
κea→0
κia→0

(
δd

δW

)
=

9

16(H + 2)2

{
(S − 1)2 +

S −H
2(S − 1)− 3S

×
[
S

[
5−M
1 +M

− 4S − 21(3 + 2M)

5(1 +M)
+ 3

(
3

5

2 + 3M

1 +M
+ 2S

)]
+ 2

+
(S −H)[(S − 1)[S(2− 3)2 − 1]]

2(S − 1)− 3S

]}
=

9(S − 1)2

16(S + 2)2
. (4.3)

As it would be expected, (4.3) coincides with the OTAM result (1.3).

4.2. Taylor’s limit

The present electrokinetic model should yield the same result as the leaky dielectric
model provided that the thickness of the space charge regions approaches zero. This
limiting case corresponds to the limiting transition given by κea → ∞ and κia → ∞.
Accordingly, one might expect the result given by (3.35)–(3.37) to be transformed
into Taylor’s expression (1.4) only if the conditions κea → ∞ and κia → ∞ are
simultaneously satisfied. However, surprisingly, the result (3.35)–(3.37) approaches
(1.4) when only one of the parameters κea and κia approaches infinity. The other
parameter can take an arbitrary value.

Let us now consider the limiting transition of (3.35)–(3.37) when κea→∞ and κia
is arbitrary. For κea� 1, expressions (3.35)–(3.37) are reduced to

δd

δW
=

9

16(H + 2)2

{
(S − 1)2 + (H − S)

×
[

(κea)
5(H − 1)

240

(2 + 3M)(κea)
2 − 4(16 + 19M)

(1 +M)(κea+ 1)
exp(κea)E1(κea)

+
(κea)

3(H − 1)

240(κea+ 1)

{
40(κea− 1)− (κea+ 3)[(κea)

2 − 4κea+ 2]
2 + 3M

M + 1

}
+

κea

5(κea+ 1)

[
2 + 3M

M + 1
+

5

3
(3 + κea)

]
− κea

]}
+ O(1/κea). (4.4)

To obtain the correct asymptotic form of the final result one must retain at least six
leading terms in the expansion of E1(κea) for κea > 1:

E1(κea) =
exp(−κea)

κea

{
1− 1

κea
+

2

(κea)2
− 6

(κea)3
+

24

(κea)4

− 120

(κea)5
+ O

[
1

(κea)6

]}
. (4.5)

Combining (4.4) and (4.5) we obtain

δd

δW
=

9

16(H + 2)2

[
H2 + 1− 2S +

3

5
(H − S)

2 + 3M

1 +M

]
+ O(1/κea). (4.6)

Thus, as κea→∞, the drop deformation approaches Taylor’s value given by (1.4).
When κia→∞, the function ψ(κia) given by (3.37) is approximated as

ψ(κia) = κia[1 + O(1/κia)]. (4.7)
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Using (4.7) and combining (3.35)–(3.37) one can show that

δd

δW
=

9

16(H + 2)2

{
(S − 1)2 +

H − S
Sκia

[
Sκia

(
3

5

2 + 3M

1 +M
+ 2S

)

+(H − S)Sκia

]}
+ O(1/κia)

=
9

16(H + 2)2

[
1 +H2 − 2S +

3

5
(H − S)

2 + 3M

1 +M

]
+ O(1/κia). (4.8)

Hence, at the limit κia → ∞, equations (3.35)–(3.37) yield Taylor’s expression (1.4),
as well. Thus, to obtain Taylor’s result (1.4), it is sufficient to consider the limiting
transition of (3.35)–(3.37) either as κea → ∞ or as κia → ∞ and not requiring the
simultaneous infinite increase of the two parameters.

To explain the behaviour of the limits discussed above, we combine (2.12), (2.26),
(3.1), (3.2), (3.11) and (3.12) to represent the internal and external electric charge
densities at the interface, δqi,e(a), as

δqi,e(a) = 3
S −H
H + 2

ε0εi,eκ
2
i,eaδE

2(S − 1)− S(κia)2/(κia coth(κia)− 1)− (κea)2/(κea+ 1)
cos(θ).

(4.9)

It is noted from (4.9) that δqi(a)→ 0 as κea→∞, and δqe(a)→ 0 as κia→∞. Hence,
when either the internal or external electric charge layer becomes infinitely thin, the
charge of the other layer (having non-zero thickness) approaches zero. Accordingly,
all the induced free charge is concentrated within the infinitely thin layer and the
system becomes the same as that described by the model of Taylor.

4.3. Conducting drop in perfect dielectric

Now we will consider the case of a conducting drop surrounded by a perfect dielectric.
It corresponds to the limiting case

κea→ 0. (4.10)

Using relation (2.11) one obtains

H = S(κia/κea)
2De

Di
. (4.11)

Due to the relationship (4.11), for given S and De/Di condition (4.10) yields

H →∞. (4.12)

At the simultaneous limits given by (4.10) and (4.12), equations (3.35)–(3.37) reduce
to

δd

δW
=

9

16

(S − 1){S[2− (κia)
2/(κia coth(κia)− 1)]2 − 1}+ (κia)

2S

[2(S − 1)− S(κia)2/(κia coth(κia)− 1)]2
. (4.13)

Equation (4.13) describes the behaviour of the drop deformation for the case of a
conducting drop surrounded by a perfect dielectric medium.

As κia → 0, one obtains from (4.1) the OTAM limiting case given by (1.3). As
κia→∞, the limiting transition in (4.13) yields (1.5) which is the common limit of the
OTAM (at S → ∞) and Taylor (at H → ∞) theories. There is also another expected
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Figure 2. A conducting drop in a perfect dielectric liquid. Variation of the normalized drop
deformation, δd/δW , with κia, for different values of S = εi/εe.

limiting transition which enables (1.5) to be obtained from (4.13). When S → ∞, the
terms depending on κia are cancelled out and (4.13) is transformed into (1.5) as well.

Note that the right-hand side of (4.13) does not contain parameter M. Such
a situation occurs because, under the conditions given by (4.10) and (4.12), no
hydrodynamic flow occurs inside and outside the drop. It is also remarkable that no
local electric current and no individual species transfer occur in the system under
consideration. As κea→ 0 and H →∞, all charge distributions present in the system
are of equilibrium nature.

The variation of the normalized drop deformation, δd/δW , with κia is given in
figure 2. The solid curves, which plot (4.13) for different S , display an increase
in prolate deformation with κia. At sufficiently small κia, each of the solid curves
approaches the corresponding limit given by (1.3). For larger κia, the curves for all S
values approach the limiting case of δd/δW = 9/16 as given by (1.5).

4.4. Perfect dielectric drop in conducting liquid

This situation corresponds to the limit

κia→ 0. (4.14)

Using (4.11), for given values of S and Di/De one obtains from (4.14) the limit of

H → 0. (4.15)

At the limits defined by (4.14) and (4.15), using asymptotic expression (4.2), the result
given by (3.35)–(3.37) is transformed to

δd

δW
=

9

64

[
(S − 1)2 − S

S + 2 + (κea)2/(κea+ 1)
Λ(S,M, κea)

]
+ O

(
1

κia

)
(4.16)
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Figure 3. A perfect dielectric drop in a conducting liquid. Variation of normalized drop
deformation, δd/δW , with κea for different values of M = ηi/ηe: (a) S = εi/εe = 0.1;
(b) S = εi/εe = 0.5.

A simplified form of the function Λ(S,M, κea) is

Λ = 2S(S − 2)− (κea)
6

240

(2 + 3M)(κea)
2 − 4(16 + 19M)

(1 +M)(κea+ 1)
exp(κea)E1(κea)

− (κea)
4

240(κea+ 1)

{
40(κea− 1)− (κea+ 3)[(κea)

2 − 4κea+ 2]
2 + 3M

M + 1

}

+
2(κea)

2

5(κea+ 1)

[
2 + 3M

M + 1
+

5

3
(3 + κea)

]
+ 2− (κea)

2

− S[(S − 1)2 − (κea)
2]

S + 2 + (κea)2/(κea+ 1)
. (4.17)

Equations (4.16) and (4.17) describe the deformation of a perfect dielectric drop in a
conducting liquid.

As was expected, for κea → 0 (4.16) and (4.17) yield the result given by (1.3).
As κea → ∞, using (4.5), one obtains from (4.16) and (4.17) the following limiting
expression:

δd

δW
=

9

64

(
1− 2S − 3

5
S

2 + 3M

1 +M

)
. (4.18)

Expression (4.18) coincides with the limit of (1.4) at H → 0. When S → 0, the result
given by (4.16) and (4.17) does not depend on κea. The right-hand side of (4.18) takes
the value 9/64 that corresponds to the limit of Taylor’s expression (1.4) as H → 0
and S → 0.

Variation of the normalized drop deformation, δd/δW , with κea is illustrated by the
curves given in figures 3(a) and 3(b). The solid curves, which were plotted according
to (4.16) and (4.17) for different M, display a decrease in δd/δW with increasing κea.
For sufficiently small κea, the curves plotted for different M coincide with the OTAM
result, (1.3). With increasing κea, each of the curves approaches a corresponding
asymptote defined by (4.18). The negative values of δd/δW in figure 3(b) correspond
to an oblate shape. This behaviour will be discussed next.
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5. Discussion
The applicability of the main result given by (3.35)–(3.37) is limited by the assump-

tions of equal diffusion coefficients and zero liquid drop charge. Therefore, when, for
example, KCl ions dominate in the liquids, and the drops bear sufficiently low electric
charge, one can expect a quantitative agreement between the present theory and the
experiment. At the same time, for H � 10, one can use the model of a conducting
drop in a perfect dielectric liquid. The relevant limiting case is described by equa-
tion (4.13) (§ 4.3). Although (4.13) was obtained for equal diffusion and distribution
coefficients, it is valid for any ionic system. This is because of the thermodynamic
equilibrium, which holds even under the influence of external electric field in the case
of zero ionic concentrations in the outer liquid. The result from thermodynamic con-
siderations should exactly coincide with (4.13) which does not contain either diffusion
coefficients or other irreversible process parameters, H and M.

Within the framework of the limiting assumptions, the present theory is ‘chemically
independent’, i.e. it is valid for an arbitrary ionic system regardless of the chemical
reactions between the species. Such a property exists only for the case of equal diffusion
and distribution coefficients. For this case only, one can use a single continuity
equation (2.10), for the electric current, instead of set of continuity equations for each
carrier flux, Saville (1997).

Being ‘chemically independent’, the present theory is like Taylor’s theory where the
origin of the charge carriers is not specified. However, Taylor’s model is independent
of the ionic system even for the case of large drop deformations (Sherwood 1988; Feng
1999). Alternatively, using the present model for large drop deformations, one always
needs to specify the ionic system and the chemical reaction between the species. This
becomes clear from the structure of equation (2.10). Adding the convection term,
δU i,eδqi,e inside the brackets in (2.10), one can use this equation to describe large
deformations. However, for this case, one should consider the conductivity σi,e to

be function of the unknown concentrations C (k)
i,e = c

(k)
i,e + δC

(k)
i,e . Due to the presence

of the additional unknown functions, δC (k)
i,e , equation set (2.8) and (2.11) should be

completed by the continuity equations for the individual species fluxes, Saville (1997).
It should be also noted that, when considering large drop deformations, one can

ignore inertial terms in (2.18), for low Reynolds numbers only.
The main result of the present paper, (3.35)–(3.37), represents the normalized drop

deformation, δd/δW , as a function of all the parameters, H , S and M, employed in
the previous theories (O’Konski & Thacher 1953; Allan & Mason 1962; Taylor 1966),
as well as the additional parameters κia and κea. The latter parameters can be related
using either (4.11) or

κia

κea
=
( α
S

)1/2

. (5.1)

Equation (5.1) is obtained by combining (2.3b) and (2.12). Using (4.11) or (5.1), one
of the additional parameters, κia or κea, can be expressed through the other one.
Consequently, the main result will depend on H , S and M, κia (or κea), and on one
of the new parameters, either α or Di/De.

The number of parameters can be reduced using the Einstein–Stokes relation for the
diffusion coefficients. Assuming equal ionic radii in both liquids, the Einstein–Stokes
relation yields

De

Di
= M. (5.2)
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Combining (4.11) with (5.2) enables one to express κia through κea (or vice versa)
and the parameters H , S and M:

κia

κea
=

(
H

S
M

)1/2

. (5.3)

Thus, simultaneously using (3.35)–(3.37) and (5.3), the normalized drop deformation,
δd/δW , is expressed through Taylor’s parameters, H , S and M, together with only
one additional parameter, either κia or κea.

According to the results of the previous theories (O’Konski & Thacher 1953;
Allan & Mason 1962; Taylor 1966) the normalized drop deformations, δd/δW , is
independent of the drop radius, whereas the result given by (3.35)–(3.37) predicts
a dependence on the drop radius. The analysis given in §§ 4.1 and 4.2 shows that,
for given κi and κe, with an increase in the drop radius, a, the normalized drop
deformation δd/δW changes from the constant value given by (1.3) (OTAM theory)
to the constant value given by (1.4) (Taylor’s theory). For a given pair of liquids
forming the contacting phases, the direction of changes in δd/δW with a would
depend on the difference between the OTAM and Taylor limits.

The difference between the Taylor and OTAM limits, δdTaylor−δdOTAM , is evaluated
using (1.3) and (1.4). After minor transformations, one obtains

δdTaylor − δdOTAM
δW

=
27(H − S )

16(H + 2)2(S + 2)2

×
[
H(2S + 1) +

(16 + 19M)S2 + (79 + 91M)S + 4 + 16M

15(1 +M)

]
.

(5.4)

Since all the parameters H , S and M are positive, equation (5.4) leads to the following
conclusion:

δdOTAM < δdTaylor when H > S,

δdOTAM > δdTaylor when H < S.

}
(5.5)

Although on increasing the drop radius, a, the drop deformation goes from the OTAM
to Taylor’s limit, the direction of the δd/δW change is dependent on the ratio H/S .
Thus, with an increase in a, one can expect the following behaviour. When H > S ,
δd/δW , increases from the OTAM limit to Taylor’s limit. However, when H < S ,
δd/δW decreases from the OTAM limit to Taylor’s limit.

Having analysed the available data on parameters of different liquids, we did not
find any exceptions to the following rule:

if S > 1 then H > S,
if S < 1 then H < S.

}
(5.6)

Thus, in the case of a more polar internal liquid (S > 1), one can expect the normalized
drop deformation, δd/δW , to be an increasing function of the drop radius, a. The
fact that δdOTAM < δdTaylor and the fact that a prolate shape is always produced
through the OTAM theory, lead to the conclusion that a prolate shape would always
be produced for S > 1 regardless of the value of the drop radius a.

When the external liquid is more polar (S < 1), the value of δd/δW is a decreas-
ing function of the drop radius, a. In this case δdOTAM > δdTaylor . Therefore, with
increasing drop radius, the drop deformation δd decreases from δdOTAM to δdTaylor .
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Figure 4. S > 1. Normalized drop deformation, δd/δW , as an increasing function of (a) κea for
deionized water drop in silicone oil, H = 108, S = 31.1, M = 0.001; (b) κia for castor oil drop in
silicone oil, H = 10, S = 1.37, M = 0.11.

Thus, for S < 1, a prolate shape is observed for all values of a if and only if Taylor’s
limit yields a prolate shape (δdTaylor > 0). When Taylor’s limit yields the oblate shape
(δdTaylor < 0), by increasing the drop radius, one can change from a prolate shape to
an oblate shape.

The behaviour of the normalized drop deformation δd/δW as a function of the
drop radius is illustrated in figures 4 and 5. The plots were obtained for systems
whose parameters H , S and M were given in Ha & Yang (2000). The solid curves
in all plots display the function given by (3.35)–(3.37) and (5.3). By specifying values
for H , S and M, equation (5.10) provides the ratio κia/κea. Consequently, by varying
either κia or κea, the other parameter is determined using (5.3).

Parameters of systems with S > 1 were employed to obtain the curves in figures 4(a)
and 4(b). In these plots, due to (5.5) and (5.6), with an increase in the drop radius, the
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Figure 5. S < 1. Normalized drop deformation, δd/δW , as a decreasing function of κea for (a)
silicone oil drop in a glycerine–methanol mixture, H = 10−4, S = 0.078, M = 62.5; (b) silicone oil
drop in castor oil with triton, H = 10−4, S = 0.491, M = 5.

normalized drop deformation increases from the value given by the OTAM limit to
Taylor’s limit. The OTAM theory predicts only prolate shapes, δdOTAM > 0. Therefore,
when S > 1, one can observe only a prolate shape.

The curves presented in figure 4(a) correspond to a system of deionized water in a
silicone oil, so there is a sharp difference in the dielectric permitivities and conduc-
tivities, namely, S = 31.1 and H = 108. For the chosen parameters, the variation of
δd/δW is confined within a relatively narrow range which is defined by the closeness
of the OTAM and Taylor’s limits. For the parameters employed in figures 4(a). Tay-
lor’s limit almost coincides with the common limit given by (1.5), δdTaylor ≈ δdcommon.
The OTAM limit can be evaluated as δdOTAM = δdcommon(S−1)2/(S+2)2 ≈ 0.8δdcommon.

The Debye parameter κi for the deionized water takes a value of order 107 m−1. It
is clear from figure 4(a), that for the deionized water drops with a ≈ 2×10−7 m (point
A, κia = 2), Taylor’s equation (1.4) overpredicts the deformation by about 13%. For
the same drop radius, the OTAM result (1.3) underpredicts the drop deformation by
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9%. Deionized water drops with a > 2 × 10−6 m (κia > 20) are deformed according
to Taylor’s equation (1.4). To be described by the OTAM expression (1.3) with an
accuracy about 1%, the deionized water drop should have a 6 5× 10−8 m.

For the case of S = 31.1 and H = 108 (figure 4a), the relatively simple equation
(4.13), which was derived in § 4.3 for the particular case of a conducting drop in
a perfect dielectric liquid, yields excellent agreement with the exact result given by
(3.35)–(3.37). Such an agreement is quite remarkable as κea was set to zero in deriving
(4.13) whereas it has a value as high as unity.

A substantial variation in the normalized drop deformation with the drop radius
can be observed for the case of S > 1 provided that the permitivities and conductivities
do not differ as sharply as in the previous example. The example given in figure 4(b)
illustrates the behaviour of a castor oil drop in a silicone oil medium, S = 1.37 and
H = 10. For this system the Taylor’s limit exceeds the OTAM limit by about 60 times.
Using (5.3), one can evaluate that κSO ≈ κw(S/HM)1/2 ≈ 2× 10−2 κw ≈ 2× 105 m−1,
where κSO and κw are the Debye parameters of the silicone oil and the deionized
water, respectively. Accordingly, in figure 4(b), the parameter κea = κSOa ≈ 2 (point
A) corresponds to drops having a radius of a ≈ 10−5 m. For a ≈ 10−5 m, the present
theory yields a drop deformation which is approximately half that predicted by
Taylor’s theory and 30 times more than that given by the OTAM theory.

In figures 5(a) and 5(b), where δd/δW is represented as a function of κea, the curves
are for S < 1. Accordingly, with an increase in a, the value of δd/δW decreases from
the OTAM limit to Taylor’s limit, which is lower than the OTAM limit. The curves
obtained using (3.35)–(3.37) and (5.3) coincide with the curves obtained using (4.16)
and (4.17) (a perfect dielectric drop in a conducting medium).

In the case of S < 1, Taylor’s expression (1.4) predicts both prolate (δdTaylor > 0)
and oblate (δdTaylor < 0) shapes. Rearranging (1.4) yields

S < 5(H − 1)2 1 +M

16 + 19M
+H (prolate shape, δdTaylor > 0), (5.7)

S > 5(H − 1)2 1 +M

16 + 19M
+H (oblate shape, δdTaylor < 0). (5.8)

Figures 5(a) and 5(b) illustrate the behaviour of systems governed by conditions (5.7)
and (5.8). In figure 5(b), at sufficiently small drop radius a, the drop has a prolate
shape, δd > 0, but with an increase in radius, the drop reaches the state of δd < 0,
i.e. the drop takes an oblate shape. Point A in figure 5(b) corresponds to a spherical
drop shape.

6. Conclusions
(i) The main result of the present theory is given by equations (3.35)–(3.37)

which yield the expression for the normalized drop deformation δd/δW , where
δW = ε0εea(δE)2/γ. The expression derived for δd/δW is valid for arbitrary Reynolds
number in the limiting case of δE → 0 and is represented by (3.35)–(3.37) as a function
of five arguments. The first three arguments, H = σi/σe, S = εi/εe, and M = ηi/ηe,
were employed in Taylor’s (1966) model. The other two arguments, κea and κia, are
the ratios of the particle radius, a, to the Debye lengths, κ−1

e and κ−1
i , of the outer

and inner liquids, respectively.
(ii) For perfect dielectrics (κea→ 0 and κia→ 0 simultaneously), the main result,

which is given by (3.35)–(3.37), is transformed into the expression obtained earlier by
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O’Konski & Thacher (1953) and Allan & Mason (1962). At the limiting transitions
given either by κea → ∞ (κia is an arbitrary constant) or by κia → ∞ (κea is an
arbitrary constant), the result given by (3.35)–(3.37) is transformed into Taylor’s (1966)
expression for leaky dielectrics.

(iii) For a conducting drop in a perfect dielectric (κea → 0), the result given by
(3.35)–(3.37) is reduced to the much simpler expression (4.13) which can describe a
conducting drop in a perfect dielectric medium for an arbitrary set of charge carriers.

(iv) For a perfect dielectric drop in a conducting medium (κia → 0), the result
given by (3.35)–(3.37) is transformed into (4.16) and (4.17).

(v) According to (3.35)–(3.37), for constant values of H , S and M the normalized
drop deformation, δd/δW , changes with an increase in the drop radius a, from the
value obtained earlier by O’Konski & Thacher (1953) and Allan & Mason (1962),
to the value given by Taylor’s (1966) theory. When S > 1 the value of δd/δW is an
increasing function of a. If S < 1, δd/δW is a decreasing function of a. In the case
of S < 1, when the condition given by (5.8) is satisfied, increasing the drop radius
results in the drop shape changing from prolate to oblate.
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